
Drabina Ekspertów
Ścisły przewodnik po aspektach miękkich – część II

Enterprise makeover

Making sense of agile requirements

Przejrzysty i testowalny kod na Androidzie?

REST w praktyce - tej dobrej i tej złej

Skalowanie i integracja systemów w asynchronicznym stylu

Do you think you're doing microservice architecture?

CQRS dla każdego

Kiedy, jak i po co migrować na NoSQL

www.bottega.com.pl facebook.com/BottegaITSolutions

About us
ŁUKASZ SZCZĘSNY

Systems engineer at
Co-organizer of the Warsaw Linux User Group
Fan of automation and DevOps

Twitter: @wybczu
Blog: http://wybcz.pl
Homepage: http://wybcz.pl

http://wybcz.pl
http://wybcz.pl

About us
MARCIN GRZEJSZCZAK

Software Architect at
Author of "Mockito Instant", "Mockito Cookbook" books
Co-author of the Groovy core’s @Builder AST
Co-founder of the Warsaw Groovy User Group
Co-author of "micro-infra-spring" lib

Twitter: @MGrzejszczak
Blog: http://toomuchcoding.blogspot.com
Homepage: http://marcin.grzejszczak.pl

http://toomuchcoding.blogspot.com
http://marcin.grzejszczak.pl

Agenda
short intro to microservices
how to deploy your first microservice
microservice pitfalls

Agenda
short intro to microservices
how to deploy your first microservice
microservice pitfalls

Conway’s Law

Conway, Melvin E. (April 1968), How do Committees Invent?,
Datamation 14 (5): 28–31, retrieved 2009-04-05

Organizations which design systems ... are constrained
to produce designs which are copies of the
communication structures of these organizations

— M. Conway

A single codebase

Conway’s Law in practice

A single codebase

Conway’s Law in practice

Conway’s Law in practice
Concept:

one team

two countries

one codebase

Conway’s Law in practice
Reality:

two teams

two countries

one codebase

Conway’s Law in practice
Effect:

two different solutions

solving same stuff

one codebase

Conway’s Law - siloed teams

extract from http://martinfowler.com/articles/microservices.html

Conway’s Law - cross functional teams

extract from http://martinfowler.com/articles/microservices.html

Business flow

AccountingBack officeFront office

Common problematic code flow

Dto Service

Impl Entity

Accounting Accounting

Accounting Accounting

Front office Front office

Front office Front office

Back office Back office

Back office Back office

monolith

many programmers

big organization

Common problematic code flow

Looks familiar?

http://www.foodnetwork.com/topics/spaghetti-recipes.html

Code flow

REST REST

Autonomous

Business
oriented

PolyglotLightweight

Front office
bounded context

JARS

Back office
bounded context

JARS

Accounting
bounded context

JARS

Microservices vs ESB

http://www.banzaj.pl/pictures/sport/boks/Haye_Walujew/haye_vs.walujew_2.jpg

Microservices vs ESB
Enterprise Service Bus

intelligent communication layer between services

provides routing, transformations etc

Microservices vs ESB
Microservices approach favors

smart endpoints (services)

dumb pipes (means of communication)

Microservices vs SOA
SOA - Service Oriented Architecture - a very broad topic

Typically understood as
XML and SOAP based with WSDL
ESB based solution

Microservice may be called “more thoroughly described
SOA”

Agenda
short intro to microservices
how to deploy your first microservice
microservice pitfalls

Write code
As a developer

I want my microservice codebase to be small

I want to be fully responsible for supporting that
service

I don’t want people from outside my team to push
changes to my codebase

Write code

introduce code review / working via Pull Requests

dev team responsible for CD pipeline

dev team receives all alerts

Build it
As a developer

I’d like all services to be built alike

it’s easier to comprehend and support

I’d like to have fast feedback if my code works

Build it

Build it
Jenkins as a Code

Jenkins master and slaves deployment

Jenkins’ jobs creation

one CD pipeline template to rule them all

Build it
def project = 'quidryan/aws-sdk-test'
def branchApi = new URL("https://api.github.com/repos/${project}/branches")
def branches = new groovy.json.JsonSlurper().parse(branchApi.newReader())
branches.each {
 def branchName = it.name
 job {
 name "${project}-${branchName}".replaceAll('/','-')
 scm {
 git("git://github.com/${project}.git", branchName)
 }
 steps {
 maven("test -Dproject.name=${project}/${branchName}")
 }
 }
}

Test it
As a developer

I don’t want to hardcode service’s IPs and ports

I don’t want to set up whole environment for tests

I’d like to test my application in isolation

I’d like to ensure that others can talk to my service

Service Discovery
Find your collaborator’s address and port with

Zookeeper
Consul
Eureka
Etcd
...

Consumer Driven Contracts

HTTP REQUEST

HTTP RESPONSE

HTTP REQUEST

HTTP RESPONSE

version 1 version 2

Consumer Driven Contracts

REQ

RESP

REQ

RESP

REQ

RESP

REQ

RESP

REQ

RESP

R
E

Q

R
E

S
P

R
E

Q

R
E

S
P

R
E

Q

R
E

S
P

v1 v2 v8

v4 v2 v3

Consumer Driven Contracts

Consumer Driven Contracts

Consumer Driven Contracts

REQ

RESP

REQ

RESP

R
E

Q

R
E

S
P

v1 v8

v2 v3

STUB

STUB

Consumer Driven Contracts

REQ

RESP

REQ

RESP

R
E

Q

R
E

S
P

v1

STUB

STUB

Consumer Driven Contracts
Consumer Driven Contracts:

test your stub against server

your consumers call your stubs

Deploy it
As a developer

I’d like my feature to be on production ASAP

I’d like to have application properties
in one place
auditable
secure

Deploy it

Deploy it
Environment provisioning

Puppet
Chef
Salt
Ansible
...

Deploy it
Application deployment

Rundeck
Capistrano
Fabric
Ansible
Freight
...

Deploy it
Application configuration

Version it!
Encrypt it!

Spring Cloud Config Server

micro-infra-spring-config

Monitor it
As a developer

I don’t want to grep my logs from different servers

I’d like to have application data in one place
logs
metrics
health status

Monitor it
Logs

Unify logging patterns!
Collect logs in one place

syslog,
ELK stack, graylog2,
Splunk, Loggly
...

CorrelationID

FIRST
SERVICE

REQUEST

No
correlationId

CorrelationId
set to X

CorrelationId
set to X

RESPONSE

SECOND
SERVICE

REQUEST

CorrelationId
set to X

CorrelationId
set to X

RESPONSE

ANOTHER
SERVICE

REQUEST

CorrelationId
set to XCorrelationId

set to X

RESPONSECorrelationId
set to X

YET
ANOTHER
SERVICE

REQUEST

CorrelationId
set to XCorrelationId

set to X

RESPONSE

CorrelationID

Monitor it
Metrics

graphite + grafana / tessera
collectd / munin
statsd

Monitor it
Alters

nagios / zabbix
cabot
logstash!

Agenda
short intro to microservices
how to deploy your first microservice
microservice pitfalls

Code reuse

do not abstract everything

sometimes copy paste gives you code decoupling

no - copy paste is not a solution to all problems ;)

do not write nanoservices - who will support it?

Too many technology stacks

pick a right tool for the job but don’t exaggerate

why would you ever want to code in Brainfuck or
Whitespace?

someone will support it afterwards - want to do it? ;)

Management issues

have to invest time and effort to build foundations

have to invest in infrastructure and devops

feature delivery pace will decrease for some time

Questions?

Links
Microservice Hackathon
Accurest - Consumer Driven Contracts implementation

https://github.com/microservice-hackathon
https://github.com/microservice-hackathon
https://github.com/codearte/accurest
https://github.com/codearte/accurest

